

Services et mécanismes des communications 5G

Philippe Owezarski

Journée Robotique Mobile 19 octobre 2021

Les communications cellulaires (sans fil)

- > 2G, 3G, 3G+, 4G, 5G, ..., 6G?????
- > Qu'est ce qui distingue les différentes générations des réseaux cellulaires ?
 - L'utilisation d'une bande de fréquence
 - Un(des) protocoles pour accéder au médium et gérer ces ressources : UMTS, EDGE, HSDPA, LTE, 5G, ..., ...
- > Sujet multi-domaines :
 - Electronique, Automatique, Informatique
- > Standardisation : $5G \rightarrow 2023$ (6G $\rightarrow 2030$)

La 5G d'ici à 2023 (1)

- > Objectif 1 : + de débit (aujourd'hui)
- > Objectif 2 : Gestion originale de la matrice de ressources temps/fréquences
 - Notamment pour une réduction du temps de latence et permettre des applications temps réel / fortement interactives
- > Objectif 3 : 3 classes de service + Slicing (avec tranches physiquement isolées)
 - eMBB : Enhanced mobile broadband, pour bande passante mobile améliorée.
 - uRLLC: Ultra Reliable low latence communications, pour communications ultra fiables à basse latence.
 - mMTC: Massive machine type communications, pour communications massives entre machines.

La 5G d'ici à 2023 (2)

- > Objectif 4 : Programmabilité du réseau
 - SDN : Software Defined Network
 - NFV : Network Function Virtualization
- > Pour une gestion :
 - plus souple
 - sans changement systématique des équipements
 - Ajout facile de services
 - ...

On en parle pour la 5G ou 6G...

- > Intégration de mécanismes d'IA
 - Pour améliorer la gestion du réseau par plus d'autonomie (anticiper les besoins, détecter les anomalies, ...)
- > Cybersécurité
- > Lien avec les réseaux satellites
 - Pour une couverture universelle ?
- → C'est logiciel donc indépendant d'une génération particulière de réseau

« Tiles » et « numérologies »

Decomposition of the resources grid Time Time $\mu=0$ Must be used by tiles with $\mu=2$ $\mu=1$ otherwise it's lost. Frequency Frequency Tiles Inefficient management 180 kHz 180 kHz sRB^1 $0.25 \, \text{ms}$ Finer management 1 TTI= 1ms 1 TTI = 1 ms

1: sRB: small Resource Block

Les antennes massives

- Capables de pointer un spot d'onde vers l'interlocuteur plutôt que d'émettre à 360° sans considération d'une quelconque orientation
 - Réduire le rayonnement électromagnétique
 - Optimiser l'utilisation des ressources hertziennes
 - Réduire la consommation énergétique

Expérimentations pour Robots Mobiles

- > Passer par un des 4 opérateurs en France
- > Mais
 - Service de slicing non disponible à ce jour
 - Services uRLLC et mMTC non disponibles commercialement à ce jour
 - Voir cependant avec les opérateurs où ils en sont de leurs développement, et si il n'est pas possible d'en bénéficier d'en le cadre d'expérimentations en recherche

Expérimentations pour Robots Mobiles (suite)

- > Possibilité de déployer un réseau 5G industriel privé
 - Gammes de fréquences réservées pour cela
 - Des exemples existent, notamment en Allemagne (Siemens)
 - Pas d'exemple en France, pas trouvé d'information sur la législation en vigueur en France

Conclusion

- > La 5G vise à être le réseau sans fil universel :
 - Slicing
 - Classes de services différenciées et adaptées aux besoins (?)
 - Déploiement de nouveaux services faciles par le principe de réseaux logiciels
- > Mais aujourd'hui
 - La 5G déployée n'offre qu'un service 4G à haut débit
 - Sans doute valable pour des expérimentations en robotique mobile car il y a peu d'utilisateurs et donc des latences réduites
 - Ou explorer la solution 5G industrielle privée

Services et mécanismes des communications 5G

Philippe Owezarski

Journée Robotique Mobile 19 octobre 2021

