
Introduction
A few words about the theory

Software

The stack of tasks

Florent Lamiraux, Olivier Stasse and Nicolas Mansard

CNRS-LAAS, Toulouse, France

Journex robotex, 3 juillet 2013

The stack of tasks



Introduction
A few words about the theory

Software

The stack of tasks

Introduction

A few words about the theory

Software

The stack of tasks



Introduction
A few words about the theory

Software

Outline

Introduction

A few words about the theory

Software

The stack of tasks



Introduction
A few words about the theory

Software

Introduction

Sensor-based closed loop control of a redundant robot

The stack of tasks



Introduction
A few words about the theory

Software

Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

I implementation of a data-flow,
I control of the graph by python scripting,
I task-based hierarchical control,
I portable: tested on HRP-2, Nao, Romeo (in simulation).

The stack of tasks



Introduction
A few words about the theory

Software

Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

I implementation of a data-flow,
I control of the graph by python scripting,
I task-based hierarchical control,
I portable: tested on HRP-2, Nao, Romeo (in simulation).

The stack of tasks



Introduction
A few words about the theory

Software

Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

I implementation of a data-flow,
I control of the graph by python scripting,
I task-based hierarchical control,
I portable: tested on HRP-2, Nao, Romeo (in simulation).

The stack of tasks



Introduction
A few words about the theory

Software

Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

I implementation of a data-flow,
I control of the graph by python scripting,
I task-based hierarchical control,
I portable: tested on HRP-2, Nao, Romeo (in simulation).

The stack of tasks



Introduction
A few words about the theory

Software

Introduction

The stack of tasks provides a control framework for real-time
redundant manipulator control

I implementation of a data-flow,
I control of the graph by python scripting,
I task-based hierarchical control,
I portable: tested on HRP-2, Nao, Romeo (in simulation).

The stack of tasks



Introduction
A few words about the theory

Software

Outline

Introduction

A few words about the theory

Software

The stack of tasks



Introduction
A few words about the theory

Software

Configuration space

I Robot: set of rigid-bodies linked by
joints B0, · · · Bm.

I Configuration: position in space of each
body.

q = (qwaist , θ1, · · · θn−6) ∈ SE(3)× Rn−6

qwaist = (x , y , z, roll ,pitch, yaw)

I Position of Bi depends on q:

MBi (q) ∈ SE(3)

The stack of tasks



Introduction
A few words about the theory

Software

Configuration space

I Robot: set of rigid-bodies linked by
joints B0, · · · Bm.

I Configuration: position in space of each
body.

q = (qwaist , θ1, · · · θn−6) ∈ SE(3)× Rn−6

qwaist = (x , y , z, roll ,pitch, yaw)

I Position of Bi depends on q:

MBi (q) ∈ SE(3)

The stack of tasks



Introduction
A few words about the theory

Software

Configuration space

I Robot: set of rigid-bodies linked by
joints B0, · · · Bm.

I Configuration: position in space of each
body.

q = (qwaist , θ1, · · · θn−6) ∈ SE(3)× Rn−6

qwaist = (x , y , z, roll ,pitch, yaw)

I Position of Bi depends on q:

MBi (q) ∈ SE(3)

The stack of tasks



Introduction
A few words about the theory

Software

Velocity

I Velocity:

q̇ = (ẋ , ẏ , ż, ωx , ωy , ωz , θ̇1, · · · θ̇n−6)

ω ∈ R3

I Velocity of Bi

(
vBi

ωBi

)
(q, q̇) = JBi (q).q̇ ∈ R6

The stack of tasks



Introduction
A few words about the theory

Software

Velocity

I Velocity:

q̇ = (ẋ , ẏ , ż, ωx , ωy , ωz , θ̇1, · · · θ̇n−6)

ω ∈ R3

I Velocity of Bi

(
vBi

ωBi

)
(q, q̇) = JBi (q).q̇ ∈ R6

The stack of tasks



Introduction
A few words about the theory

Software

Velocity

I Velocity:

q̇ = (ẋ , ẏ , ż, ωx , ωy , ωz , θ̇1, · · · θ̇n−6)

ω ∈ R3

I Velocity of Bi

(
vBi

ωBi

)
(q, q̇) = JBi (q).q̇ ∈ R6

The stack of tasks



Introduction
A few words about the theory

Software

Task

I Definition: function of the
I robot configuration,
I time and
I possibly external parameters

that should converge to 0:

T ∈ C∞(C × R,Rm)

I Examples
I trajectory tracking of an end-effector Bleft−hand
I trajectory tracking of the center of mass

The stack of tasks



Introduction
A few words about the theory

Software

Task

I Definition: function of the
I robot configuration,
I time and
I possibly external parameters

that should converge to 0:

T ∈ C∞(C × R,Rm)

I Examples
I trajectory tracking of an end-effector Bleft−hand
I trajectory tracking of the center of mass

The stack of tasks



Introduction
A few words about the theory

Software

Task

I Definition: function of the
I robot configuration,
I time and
I possibly external parameters

that should converge to 0:

T ∈ C∞(C × R,Rm)

I Examples
I trajectory tracking of an end-effector Bleft−hand
I trajectory tracking of the center of mass

The stack of tasks



Introduction
A few words about the theory

Software

Task

I Definition: function of the
I robot configuration,
I time and
I possibly external parameters

that should converge to 0:

T ∈ C∞(C × R,Rm)

I Examples
I trajectory tracking of an end-effector Bleft−hand
I trajectory tracking of the center of mass

The stack of tasks



Introduction
A few words about the theory

Software

Task based control

Given
I a configuration q,
I a task:

I T ∈ C∞(C × R,Rm),

compute a control vector q̇
I that makes T converge toward 0 and

The stack of tasks



Introduction
A few words about the theory

Software

Task based control

Given
I a configuration q,
I a task:

I T ∈ C∞(C × R,Rm),

compute a control vector q̇
I that makes T converge toward 0 and

The stack of tasks



Introduction
A few words about the theory

Software

Task based control

Jacobian:
I we denote

I J = ∂T
∂q

I then
I Ṫ = J(q, t)q̇ + ∂T

∂t (q, t)

We try to enforce
I Ṫ = −λT ⇒ T (t) = e−λtT (0)→ 0
I λ is called the gain associated to T .

The stack of tasks



Introduction
A few words about the theory

Software

Task based control

Jacobian:
I we denote

I J = ∂T
∂q

I then
I Ṫ = J(q, t)q̇ + ∂T

∂t (q, t)

We try to enforce
I Ṫ = −λT ⇒ T (t) = e−λtT (0)→ 0
I λ is called the gain associated to T .

The stack of tasks



Introduction
A few words about the theory

Software

Task based control

Jacobian:
I we denote

I J = ∂T
∂q

I then
I Ṫ = J(q, t)q̇ + ∂T

∂t (q, t)

We try to enforce
I Ṫ = −λT ⇒ T (t) = e−λtT (0)→ 0
I λ is called the gain associated to T .

The stack of tasks



Introduction
A few words about the theory

Software

Task based control

Jacobian:
I we denote

I J = ∂T
∂q

I then
I Ṫ = J(q, t)q̇ + ∂T

∂t (q, t)

We try to enforce
I Ṫ = −λT ⇒ T (t) = e−λtT (0)→ 0
I λ is called the gain associated to T .

The stack of tasks



Introduction
A few words about the theory

Software

Task based control

Resolution of the constraint:

Ṫ = Jq̇ +
∂T
∂t

= −λT (1)

Jq̇ = −λT − ∂T
∂t

(2)

q̇ , −J+(λT +
∂T
∂t

) (3)

Where J+ is the (Moore Penrose) pseudo-inverse of J.

The stack of tasks



Introduction
A few words about the theory

Software

Task based control

Resolution of the constraint:

Ṫ = Jq̇ +
∂T
∂t

= −λT (1)

Jq̇ = −λT − ∂T
∂t

(2)

q̇ , −J+(λT +
∂T
∂t

) (3)

Where J+ is the (Moore Penrose) pseudo-inverse of J.

The stack of tasks



Introduction
A few words about the theory

Software

Hierachical task based control

I Usually, the task requires less dof than available.
I Other tasks can be controlled without affecting Ṫ
I Hence hierarchical task based control

The stack of tasks



Introduction
A few words about the theory

Software

Hierachical task based control

I Usually, the task requires less dof than available.
I Other tasks can be controlled without affecting Ṫ
I Hence hierarchical task based control

The stack of tasks



Introduction
A few words about the theory

Software

Hierachical task based control

I Usually, the task requires less dof than available.
I Other tasks can be controlled without affecting Ṫ
I Hence hierarchical task based control

The stack of tasks



Introduction
A few words about the theory

Software

Outline

Introduction

A few words about the theory

Software

The stack of tasks



Introduction
A few words about the theory

Software

Architecture overview

-jrl-mal

-jrl-dynamics
-abstract-robot-dynamics

-jrl-mathtools

libraries

dynamic-graph

-entity
-signal
-command

-pool
-factory

dynamic-graph-python

-bindings
-remote interpreter

sot-core

-solvers
-feature

-task

sot-dynamic

-forward kinematics
-inverse dynamics

sot-pattern-generator

-walk motion generation

sot-hrp2 sot-romeo sot-nao

sot-hrprtc-hrp2

} abstract
controllers

} immersion into
robot controller

-Robot

dynamic-graph-tutorial

-inverted pendulum

-jrl-walkgen

sot-tools

-helper tools

sot-hrp2-hrpsys

OpenHRP-3.1 OpenHRP-3.0

dynamic_graph_bridge

services
/run_command

/start_dynamic_graph

/stop_dynamic_graph

topics
/joint_state

from/to signals

ros-electric

sot-application

-application dependent
 initializations

The stack of tasks



Introduction
A few words about the theory

Software

Main features

I Entity
I Signal: synchronous interface
I Command: asynchronous interface

I Factory
I builds a new entity of requested type,
I new entity types can be dynamically added (advanced).

I Pool
I stores all instances of entities,
I return reference to entity of given name.

The stack of tasks



Introduction
A few words about the theory

Software

Main features

I Entity
I Signal: synchronous interface
I Command: asynchronous interface

I Factory
I builds a new entity of requested type,
I new entity types can be dynamically added (advanced).

I Pool
I stores all instances of entities,
I return reference to entity of given name.

The stack of tasks



Introduction
A few words about the theory

Software

Main features

I Entity
I Signal: synchronous interface
I Command: asynchronous interface

I Factory
I builds a new entity of requested type,
I new entity types can be dynamically added (advanced).

I Pool
I stores all instances of entities,
I return reference to entity of given name.

The stack of tasks



Introduction
A few words about the theory

Software

Signal

Synchronous interface storing a given data type
I output signals:

I recomputed by a callback function
I input signals:

I plugged by an output signal

The stack of tasks



Introduction
A few words about the theory

Software

Signal

Synchronous interface storing a given data type
I output signals:

I recomputed by a callback function
I input signals:

I plugged by an output signal

The stack of tasks



Introduction
A few words about the theory

Software

Command

Asynchronous interface
I typed input
I trigger an action,
I returns a typed result

The stack of tasks



Introduction
A few words about the theory

Software

Main features

Python bindings
I module dynamic graph linked to C++ compiled code

I class Entity
I each C++ entity class declared in the factory generates a

python class of the same name,
I signals are instance members,
I commands are bound to instance methods

I class Signal
I value setter and getter

The stack of tasks



Introduction
A few words about the theory

Software

Main features

Python bindings
I module dynamic graph linked to C++ compiled code

I class Entity
I each C++ entity class declared in the factory generates a

python class of the same name,
I signals are instance members,
I commands are bound to instance methods

I class Signal
I value setter and getter

The stack of tasks



Introduction
A few words about the theory

Software

Main features

Python bindings
I module dynamic graph linked to C++ compiled code

I class Entity
I each C++ entity class declared in the factory generates a

python class of the same name,
I signals are instance members,
I commands are bound to instance methods

I class Signal
I value setter and getter

The stack of tasks



Introduction
A few words about the theory

Software

Main features

Python bindings
I module dynamic graph linked to C++ compiled code

I class Entity
I each C++ entity class declared in the factory generates a

python class of the same name,
I signals are instance members,
I commands are bound to instance methods

I class Signal
I value setter and getter

The stack of tasks



Introduction
A few words about the theory

Software

Main features

Hierarchical task solver
I computes robot joint velocity

The stack of tasks



Introduction
A few words about the theory

Software

Extensions

I sot-dynamic: forward kinematics
I position and Jacobian of end effectors (wrists, ankles),
I position of center of mass

I sot-pattern-generator: walk motion for legged
robots,

I sot-dyninv: inverse dynamics based control.

The stack of tasks



Introduction
A few words about the theory

Software

Extensions

I sot-dynamic: forward kinematics
I position and Jacobian of end effectors (wrists, ankles),
I position of center of mass

I sot-pattern-generator: walk motion for legged
robots,

I sot-dyninv: inverse dynamics based control.

The stack of tasks



Introduction
A few words about the theory

Software

Extensions

I sot-dynamic: forward kinematics
I position and Jacobian of end effectors (wrists, ankles),
I position of center of mass

I sot-pattern-generator: walk motion for legged
robots,

I sot-dyninv: inverse dynamics based control.

The stack of tasks


	Introduction
	A few words about the theory
	Software

