Simulations distribuées, multi-robots : pourquoi et comment garantir la répétabilité des résultats ?

Distributed, multi-robot simulations: why and how to ensure repeatibility of results?

Christophe Reymann

LAAS-CNRS

19-20 oct 2017

SKYSCANNER

Precidrone

What do I want from the simulation framework?

- ► Compose distributed, modular simulations, interconnect simulators
- ► Switch and mix betw. simulated and real components
- ► Synchronize simulations, control time advancement
- ► Have repeatable simulation results
- ► Run realtime simulations
- ► Easy to integrate

OVERVIEW

Case studies

Why do we need repeatability?

Why not HLA?

Proposal: the DSAAM library

Discussion

WHAT IS REPEATABILITY?

The same initial conditions should always produce the same simulation results.

Replicability ≠ Reproductibility
Replicability is not Reproducibility: Nor is it Good Science,
C. Drummond, 2009

- Reproductibility implies introduction of variability
- Replicability can't be used to prove scientific results
- ► Only useful to detect scientific fraud (debatable)

What is repeatability's purpose for the scientist?

We are not (only) scientists, but also (mostly) software developpers.

Bug finding and checking:

- ► Removes unwanted variability
- ► Replicate bugs
- ► Regression testing

Ease of development and use:

- ► Removes unwanted variability
- ► Prototyping with non-realtime algorithms
- ► Launching of simulations in batches

Verifiable results?

Is my simulation repeatable?

Probably not, if you are using a robotic simulator.

What deters repeatability?

System variability:

- ► Networking delays
- ► Dropped messages (full buffers)
- ► System power & load
- ► Scheduling policies
- ▶ ...

Interaction simulation \leftrightarrow tested algorithm(s):

- ► Out of order message processing
- ► Non-deterministic algorithm
- ▶ ..

Brief intro to HLA

Industry/Military standard

- ► Interconnect simulators (exchange state)
- ► Manage simulation
- ► Time management
- ► Best effort (realtime) mode

... what about DIS?

HLA INTEGRATION IN MORSE

TIME MANAGEMENT IN HLA

- ► Sim. wants to advance time to T
- ► Sim. sends request
- ► RTI delivers all messages up to T
- ► Sim. request is granted
- ► Sim. advances time to T

Fig. 2. Typical execution sequence

Case study Why repeatability? Why not HLA? Proposal: a new framework Discussion

ADVANTAGES AND DRAWBACKS

Pros:

- ► It just works[™]
- ► Provides time management
- ► It is an industry standard
- ► Centralized architecture

Cons:

- Military standard
- ▶ Quite complex to use, not many training resources
- ► Dependency on the RTI: no API/wire compatibility
- ► Adds another middleware for the roboticist
- ► No tools, no open-source ecosystem
- ► Centralized architecture

Proposal: A NEW FRAMEWORK

DSAAM = Decentralized Synchronisation Architecture for Asynchronous Middleware (name may change)

- ► (Only) provides time management (so far)
- ▶ Between com. middleware and app.
- May work with any kind of message passing communication middleware
- As least intrusive as possible

Minimal requirement: Messages should include timestamp

Current status:

- ► POC with raw threads and ROS
- ▶ native Python & C++ implementation

Precidrone

Introduction

Case Study

Node:

- ► has input and output message flows
- ▶ and it's own clock

Message flow:

- ► Message exchange between nodes
- ► Message are timestamped
- ► Has a message rate (evt. dynamic)

TIME MANAGEMENT (1)

Case Study

Node can only advance time if all messages have been processed up to that time:

$$m_B(t), \Delta_{t_B} \Rightarrow \text{ next incoming message for B at } t' >= t$$
 (1)

TIME MANAGEMENT (2)

Case Study

Next published message timestamp can be deduced from the previous one:

$$m_B(t), \Delta_{t_B} \Rightarrow \text{next outgoing message } m_B(t + \Delta_{t_B})$$
 (2)

Time management (3)

Case Study

Messages are processes chronologically:

$$t < t' \Rightarrow m(t)$$
 processed before $m'(t')$ by the node (3)

Time management (4)

Case Study

No message shall be lost:

B emits message \Rightarrow receivers queues are not full (4)

Example (1)

Example (2)

Example (3)

Case Study

Example with cycles

Case Study

ROS EXAMPLE

Case Study

#process message

DUMMY EXAMPLE: ROS API IN PYTHON (1)

from dsaam.ros import RosNode, Time

from geometry_msgs.msg import PointStamped

```
node = RosNode('B', start time=Time(0), dt=Time(4),
               queue size=3)
node.setup publisher ('/B/position', PointStamped,
                     dt=Time(4),
                     subscribers=['C'])
node.setup_subscriber('/A/position', PointStamped,
                      callback=process_pos,
                      dt=Time(2)
```

def process pos(name, message, next message time):

```
(\ldots)
node.init ros()
while true:
    t = node.next()
    if t > node.t + node.dt:
        m, t = simulation_step()
        node.send('/C/position', m, t)
```

- Decentralized time management
- ► Low overhead, no additional copy
- ► Can be implemented with any p2p message passing middleware
- Possibility of dynamic message rate
- Easy to integrate
- ► (Almost) transparent for apps. using "raw" middleware
- ▶ Benefits from the existing middleware ecosystem

SUMMARY: WHAT'S BAD

Difficult to fix:

- ► Cannot be used with mixed middlewares
- ► Not compatible with event based simulation (HLA is)

Could be improved or added:

- Message ACK overhead
- ► No simulation management
- ► Static flows, no dynamic reconfiguration (cf prev. point)
- ► No realtime/best effort mode

DISCUSSION

Case study Why repeatability? Why not HLA? Proposal: a new framework Discussion

Questions

For the audience:

- ► Is repeatability a concern for you?
- ► Do you find the proposed solution interesting?
- ► If not, why?
 - Any game stoppers?
 - ► Missing features?
- ► ... vs HLA?